Galois module structure of ideals in wildly ramified cyclic extensions of degree $p^2$
نویسندگان
چکیده
منابع مشابه
Factorisability and the arithmetic of wildly ramified Galois extensions
© Université Bordeaux 1, 1989, tous droits réservés. L’accès aux archives de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier do...
متن کاملGALOIS MODULE STRUCTURE OF GALOIS COHOMOLOGY FOR EMBEDDABLE CYCLIC EXTENSIONS OF DEGREE p
Let p > 2 be prime, and let n,m ∈ N be given. For cyclic extensions E/F of degree p that contain a primitive pth root of unity, we show that the associated Fp[Gal(E/F )]-modules H(GE , μp) have a sparse decomposition. When E/F is additionally a subextension of a cyclic, degree p extension E/F , we give a more refined Fp[Gal(E/F )]-decomposition of H (GE , μp).
متن کاملGALOIS MODULE STRUCTURE OF pTH-POWER CLASSES OF CYCLIC EXTENSIONS OF DEGREE p
In the mid-1960s Borevič and Faddeev initiated the study of the Galois module structure of groups of pth-power classes of cyclic extensions K/F of pth-power degree. They determined the structure of these modules in the case when F is a local field. In this paper we determine these Galois modules for all base fields F .
متن کاملOn the Modularity of Wildly Ramified Galois Representations
where GQ = Gal ( Q/Q ) is the absolute Galois group of Q and ` is a fixed rational prime. For example, ρ = ρE,` may be the `-adic representation of an elliptic curve E over Q, or ρ = ρf may be the `-adic representation associated to a modular form. The continuity of such Galois representations implies the image lies in GL2(O) for some ring of integers O with maximal ideal λ in a finite extensio...
متن کاملHopf Galois Structures on Degree p2 Cyclic Extensions of Local Fields
Let L be a Galois extension of K, finite field extensions of Qp, p odd, with Galois group cyclic of order p2. There are p distinct K-Hopf algebras Ad, d = 0, . . . , p− 1, which act on L and make L into a Hopf Galois extension of K. We describe these actions. Let R be the valuation ring of K. We describe a collection of R-Hopf orders Ev in Ad, and find criteria on Ev for Ev to be the associated...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l’institut Fourier
سال: 1995
ISSN: 0373-0956
DOI: 10.5802/aif.1468